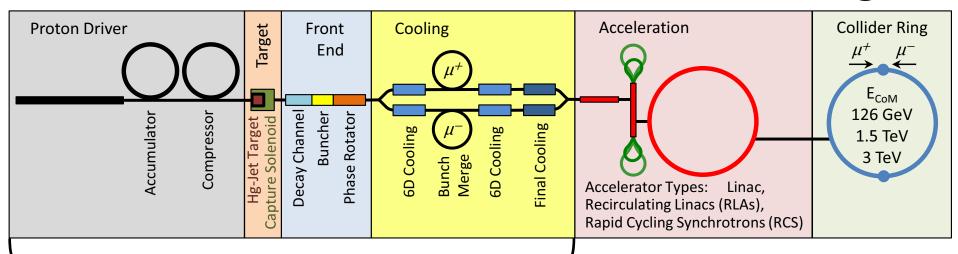
Possible issues of RF cavities in 6D muon cooling channel

K. Yonehara

APC, Fermilab

Introduction


- RF operation in a multi-tesla magnetic field is crucial for all 6D cooling channel
- Here, I assume that we have a solution for a vacuum RF cavity
- What is the other considerable physics we have to address?
 - Beam loading
 - Anything else?

Cooling performance vs RF gradient

Length of IC (Ionization Cooling Channel) required 10⁻⁶ reduction as a function of the RF acceleration gradient

One of most crucial issues: Beam loading

Proton source:

For example PROJECT X at 4 MW, with 2±1 ns long bunches

Goal:

Produce a high intensity μ beam whose 6D phase space is reduced by a factor of ~10⁶-10⁷ from its value at the production target

Collider: $\sqrt{s} = 3 \text{ TeV}$ Circumference 4.5km

 $L = 3 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

 μ /bunch = 2x10¹²

 $\sigma(p)/p = 0.1\%$

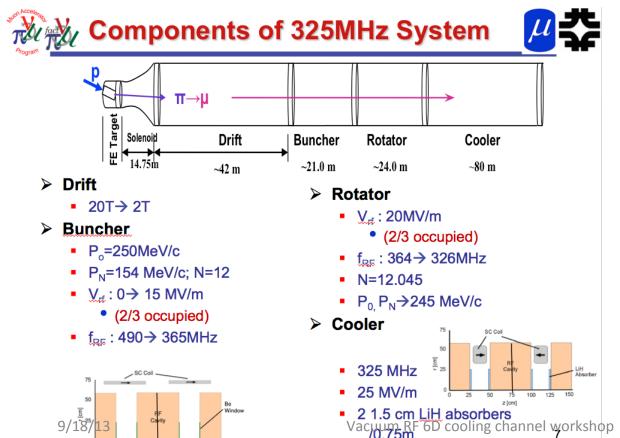
 $\varepsilon_{\perp N}$ = 25 μ m, $\varepsilon_{//N}$ =72 mm

 β * = 5mm

Rep. Rate = 12 Hz

$$N_{u,\pi} > 10^{14}$$
 @ Target

$$N_{\mu} > 3 \ 10^{13}$$
 @ Decay channel

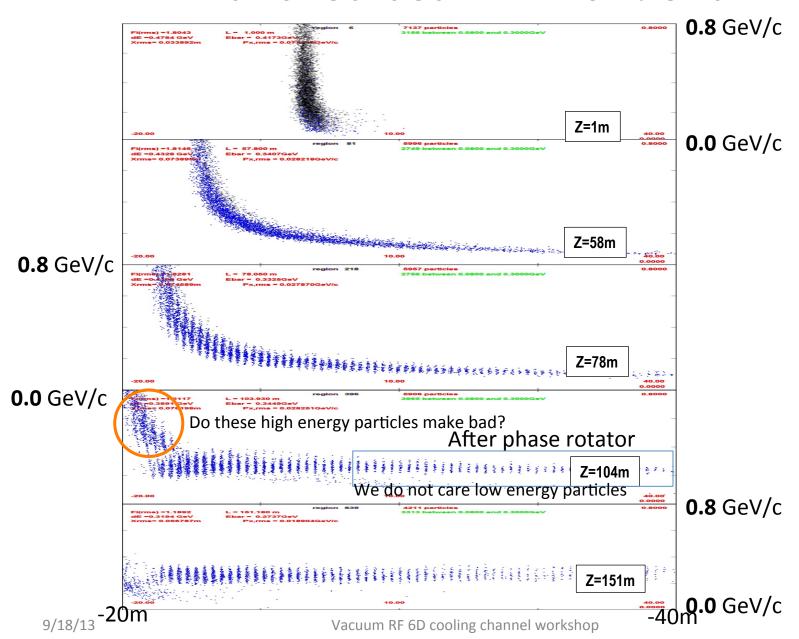

$$\sim 10^{12} \times (10 \sim 20) + \alpha$$
 @ Buncher & Phase rotator

$$\sim 10^{12} \times (10 \sim 20) / 2$$
 @ Cooling channel (after charge separator)

 $\sim 10^{13}$ @ Cooling channel (after bunch merging)

Beam loading in front end

- Alvin will give a detail talk tomorrow about a beam loading in a cooling channel
- One should look it in a front end, too

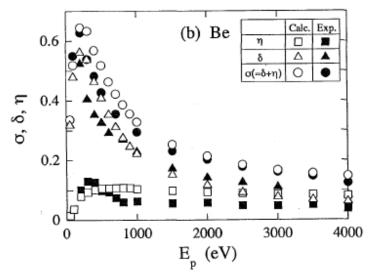

Number of bunches: 12@200 MHz channel 20@325 MHz channel Similar bunch train length ~ 60 ns

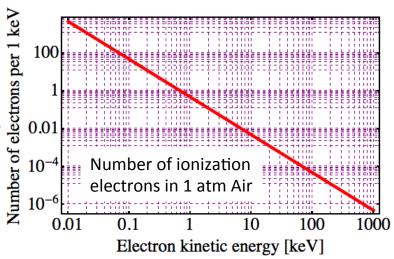
Number of muons per bunch: N_{μ} /bunch@200 MHz channel > N_{μ} /bunch@325 MHz channel

Bunch gap:

 t_{μ} /bunch@200 MHz channel < t_{μ} /bunch@325 MHz channel

Bunched beam in front end

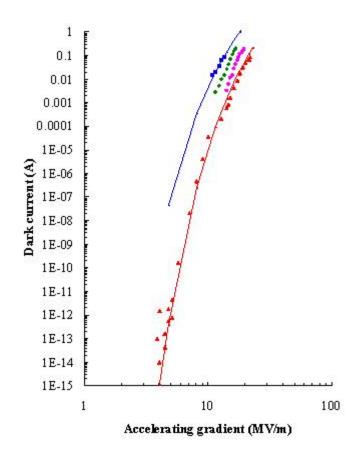


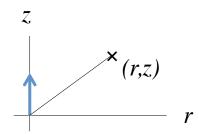

Electron cloud in RF cavities

- Electron cloud can be generated everywhere
 - Ionization electron from Be window
 - Ionization electron from residual gas
 - Surface emission electron
- What is the considerable physics process with them?

Ionization electrons from materials

- SEY of Beryllium is known
- 10^{13} muons produces 0.15×10^{13} electrons
- Residual gas in a cavity
 (assume Air) can be estimated
- Residual gas pressure can be 10⁻⁸ Torr
- $1,000 \times 1.3 \ 10^{-11} \times 10^{13}$ electrons are generated from residual gas




Other contributions: Field emission electrons

- Assume E=20 MV/m, then the dark current is ~ 0.1 Amps
- Assume the RF flattop is 60 ns
 Ne ~ 60 10⁻⁹ 0.1/e (at E=20 MV/m)
 ~ 4 10¹⁰ Electrons/one RF cycle

Overall number of electrons in a cavity will be $0.15 \ 10^{12} + 1.3 \ 10^2 + 4 \ 10^{10}$ $\sim 0.19 \ 10^{12}$ electrons/bunch 20 % of the number of muons

Beam-induced EM field (collective effect)

20

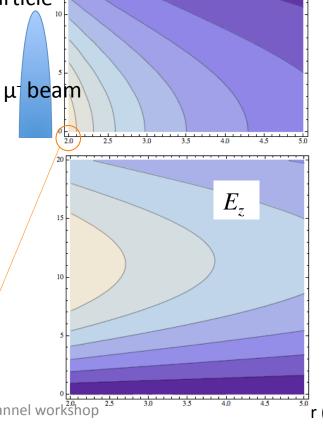
z (mm) Calculate field map with f(r)

particle

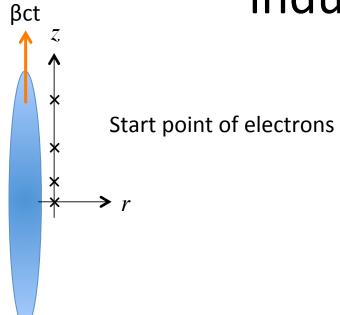
Induced Electric field by moving single charge particle

$$\hat{e}(\vec{r}) = -\frac{q}{4\pi\varepsilon_0} \frac{\gamma}{r^3 \left(1 + \frac{u_r^2 \gamma^2}{c}\right)^{3/2}} \vec{r}$$

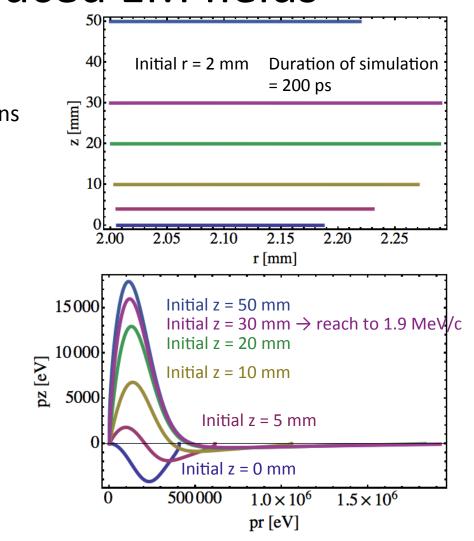
$$E_{total} = \int Q f(\vec{r}) \sqrt{\hat{e}_r(\vec{r})^2 + \hat{e}_z(\vec{r})^2} d\vec{r}$$


I used the normal distribution f(r)

$$\sigma r = 2 \text{ mm}$$


$$\sigma z = 10 \text{ mm}$$

$$N_u = 10^{12} \,\mu/bunch$$


Maximum electric field is 170 MV/m

Single particle tracking with beaminduced EM fields

 $\sigma r = 2 \text{ mm}$ $\sigma z = 10 \text{ mm}$ $N_{\mu} = 10^{12} \text{ µ/bunch}$ p = 200 MeV/c

New mechanism of beam energy consumption by an electron swarm

- Average energy consumption of free electron (within a 1 $3\sigma r$ & $\pm 5 \sigma z$ sheath) is 0.7 MeV
- If density of electron cloud is ~20 % of the number of muons per bunch, single muon can lose the kinetic energy 0.15 MeV/0.1 m from electron cloud
 - dE/dx in LH2 is 3 MeV/0.1 m
 - -5% of additional dE/dx
 - Is it good or or bad?

Memorandum in present simulation

- Simulation only made with μ^{-} beam, μ^{+} should be looked
- Electron motion in beam path should also be looked
 - Beam dynamics, i.e. transverse & longitudinal oscillations needs to be involved
- Simulation only calculates an induced electric field
 - Induced magnetic field and RF external field should be involved

New energy loss mechanism: Plasma Cooling ("Tollestrup" process)

- No stochastic in the beam-plasma process
 - No statistic heating
- Density of electron cloud can be controlled by putting gas in the RF cavity
 - There should be an optimum gas pressure
 - Gas generates ionization electrons
 - Gas also dumps the kinetic energy of electrons
 - Simulation effort is in progress
 - Plasma coherent motion will be dominant at some plasma density (f_{plasma} ~ beam bunch length at gas pressure 1 atm)

Summary

- Preliminary particle tracking simulation has been made to investigate the influence of electron cloud on μ beam
 - Result suggests that there may be a new energy loss mechanism
- Involving coulomb interaction of electron with gas is in progress
 - Gas plasma simulation for HPRF cavity project has been proposed
 - The result will be used to test the numerical simulation